A SURVEY ON ALEXANDER POLYNOMIALS OF PLANE CURVES by
نویسندگان
چکیده
— In this paper, we give a brief survey on the fundamental group of the complement of a plane curve and its Alexander polynomial. We also introduce the notion of θ-Alexander polynomials and discuss their basic properties. Résumé (Un état des lieux sur les polynômes d’Alexander des courbes planes) Dans cet article, nous donnons un bref état des lieux sur le groupe fondamental du complémentaire d’une courbe plane et son polynôme d’Alexander. Nous introduisons de plus la notion de polynôme d’Alexander de type θ et discutons leurs propriétés élémentaires.
منابع مشابه
Tangential Alexander Polynomials and Non-reduced Degeneration
We introduce a notion of tangential Alexander polynomials for plane curves and study the relation with θ-Alexander polynomial. As an application, we use these polynomials to study a non-reduced degeneration Ct, → D0 + jL. We show that there exists a certain surjectivity of the fundamental groups and divisibility among their Alexander polynomials.
متن کاملPolynomial Invariants of Legendrian Links and Plane Fronts
We show that the framed versions of the Kauuman and HOMFLY poly-nomials of a Legendrian link in the standard contact 3-space and solid torus are genuine polynomials in the framing variable. This proves a series of conjectures of 5] and provides estimates for the Bennequin{Tabachnikov numbers of such links. In a series of recent papers 1{3], V. I. Arnold revived interest in the study of plane cu...
متن کاملPolynomials Representing Eynard-orantin Invariants
The Eynard-Orantin invariants of a plane curve are multilinear differentials on the curve. For a particular class of genus zero plane curves these invariants can be equivalently expressed in terms of simpler expressions given by polynomials obtained from an expansion of the Eynard-Orantin invariants around a point on the curve. This class of curves contains many interesting examples.
متن کاملAn equivalent representation for weighted supremum norm on the upper half-plane
In this paper, rstly, we obtain some inequalities which estimates complex polynomials on the circles.Then, we use these estimates and a Moebius transformation to obtain the dual of this estimates forthe lines in upper half-plane. Finally, for an increasing weight on the upper half-plane withcertain properties and holomorphic functions f on the upper half-plane we obtain an equivalentrepresenta...
متن کاملUniqueness of meromorphic functions ans Q-differential polynomials sharing small functions
The paper concerns interesting problems related to the field of Complex Analysis, in particular, Nevanlinna theory of meromorphic functions. We have studied certain uniqueness problem on differential polynomials of meromorphic functions sharing a small function. Outside, in this paper, we also consider the uniqueness of $q-$ shift difference - differential polynomials of mero...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004